
GRID
Version 1.0

GRID Team

avr. 25, 2021





Table des matières

1 Table des matières 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Indicateurs et graphiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Déploiement et installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Module agri_data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Module app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Index et recherche 15

Index des modules Python 17

Index 19

i



ii



GRID, Version 1.0

Bienvenue sur la documentation du GRID!

Ici, vous trouverez :

1. Le fonctionement général du projet

2. L’insfrastructure du projet

3. Comment les indicateurs sont calculés

4. Comment lire le projet

5. La documentation spécifique au moudule data_agri qui génère les données

6. La documentation spécifique au module app qui génère l’app

Documentation PDF

Attention : Le dashboard est pour le moment optimisé uniquement pour les écrans d’ordinateurs

Table des matières 1

http://docs.grid-tech.fr/grid.pdf


GRID, Version 1.0

2 Table des matières



CHAPITRE 1

Table des matières

1.1 Introduction

1.1.1 Se connecter

Pour voir le dashboard, rendez-vous sur app.grid-tech.fr .

Pour les besoins de la démonstration dans le cadre du concours FIFG, un compte test a été créé :
— Nom d’utilisateur : test
— Mot de passe : test

Astuce : Avec notre infrastructure actuelle, le chargement des pages peut paraître long mais nous travaillons pour y
remédier.

Attention : Le dashboard est pour le moment optimisé pour les écrans d’ordinateurs.

Pour plus de détails sur le déploiement Déploiement et installation

1.1.2 Les données

Les données d’entrée

Le GRID fonctionne à partir de 2 types de données d’entrée :
— Les données externes provenant de Météo France, Copernicus, etc ;
— Les données liées à l’exploitation :

— Données internes rentrées par l’agriculteur dans un questionnaire ;
— Données financières provenant de l’établissement bancaire.

3

http://app.grid-tech.fr


GRID, Version 1.0

Données pour le PoC

Pour le PoC, afin de démontrer la capacité dynamique du dashboard, à chaque login, une partie des données sont tirées
au hasard, en particulier celles relatives :

— aux scores RSE présentés sur la première page
— aux données financières (cf page indicateur et le module agri_data pour plus de détail)

Toutes les données sont disponibles ici

Pour plus de détail sur les données et leur exploitation Indicateurs et graphiques

1.1.3 Le code

Vous pouvez retrouver notre code dans son intégralité ici.

1.2 Infrastructure

1.2.1 Organisation globale du répertoire

Le répertoire est organisé autour de deux principaux modules :
— app : module générant l’application et ses rendus
— agri_data : module regroupant et générant les données

Le fichier principal qui lance l’application est situé à la racine, il s’appelle run.py

|
|-- app/ # L'application en elle même
| |-- home/ # Génération des contenus spécifiques
→˓pas page HTML spécifiques
| |-- base/ # Blueprint, contient la structure de l
→˓'application
|
|-- agri_data/ # Génération des données
|
|-- ************************************************************************

1.2.2 Point de vue Flask App / Python

Le module app est organisé en 2 sous-modules :
— home qui sert à générer les visuels, en particulier le sous-module content_gen
— base qui sert à gérer l’authentification

Le code est ensuite commenté et précisé dans les modules Module agri_data et Module app

La structure du répértoire ,d’un point de vue Python, est la suivante :

|
|-- app/ # L'application en elle même
| |-- home/
| |-- content_gen/ # Module générant les visuels
| | |-- data/ # Données externes pré-traitées
| | |-- graph_generation.py # Génération des graphiques
| | |-- index_renderer.py # Génération de l'index
| | |-- map_generation.py # Génération des cartes
| | |-- questionaire.py.py # Génération du questionnaire agri

(suite sur la page suivante)

4 Chapitre 1. Table des matières

https://github.com/Green-Investement-Dashboard/data/tree/main/data_eg
https://github.com/Green-Investement-Dashboard/GRID_app


GRID, Version 1.0

(suite de la page précédente)

| |-- routes.py
|
| |-- base/
| |-- forms.py # Script gérant le formulaire de login
→˓et d'inscription
| |-- models.py # Script gérant la lecture de la base
→˓de données des logins
| |-- routes.py # Script gérant les actions
| |-- util.py # Script gérant le hachage du mot de
→˓passe
|
|-- agri_data/
| |-- data_draw.py # Tirage aléatoire des données
| |-- data_import.py # Import des données de GitHub
| |-- *.json
|
|-- requirements.txt # Librairies nécessaires pour faire
→˓fonctionner le code
|-- environment.yml # Environnement anaconda
|-- requirements-mysql.txt # Module nécessaire pour Mysql DMBS
|-- requirements-pqsql.txt # Module nécessaire pour PostgreSql DMBS
|
|-- .env # Variable environnement
|-- config.py # Configuration de l'application
|-- run.py # Lancement de l'application
|
|-- ************************************************************************

1.2.3 Point de vue fronte-end / HTML

Les fichiers HTML sont organisés autour de 2 dossiers :
— /home : ici sont stockés les fichiers HTML des pages du dashboard
— /base : ici sont stockés les fichiers HTML servant de modèles pour générer les pages

|
|-- app/
| |-- home/
| |-- templates/ # Ensemble des pages HTML
| | | |-- *.html
|
| |-- base/
| |-- static/
| | |-- <css, JS, images> # Fichiers CSS, Javascripts et images
| |
| |-- templates/ # Modèles pour le rendu des pages
| |
| |-- includes/
| | |-- navigation.html # Menu du haut
| | |-- sidebar.html # Menu latéral
| | |-- footer.html # Pied de page
| | |-- scripts.html # Scripts communs aux pages HTML
| |
| |-- layouts/ # Pages masters
| | |-- base.html # Layout des pages
| |

(suite sur la page suivante)

1.2. Infrastructure 5



GRID, Version 1.0

(suite de la page précédente)

| |-- accounts/ # Pages authentification
| |-- login.html # Page de Login
| |-- register.html # Page d'inscription
|
|-- ************************************************************************

1.3 Indicateurs et graphiques

1.3.1 Les types de représentations

Afin de rendre compte au mieux des données, nous utilisons trois types de représentations :
— Compteurs : ceux-ci codés en JS représentent les 3 scores ESG sur la page d’accueil.
— Graphiques : que ce soit des graphiques lignes ou à barres ils servent à représenter l’évolution temporelle d’un

indicateur .
— Echelles de couleurs : lorsque qu’un indicateur est calculé à partir d’un modèle, il est représenté sous la

forme d’une échelle de couleurs comme on peut le retrouver dans l’onglet Social avec le rayonnement de
l’exploitation.

— Cartes : ce support est utilisé pour représenter des données spatiales avec une dimension temporelle.

1.3.2 Exemple d’indicateurs

Carte des feu de forêts

Sur la base des données du Climate Data Store, base de données de l’UE, nous avons pu exporter ces données, les
traiter et les nettoyer pour notre usage. Nous avons décidé de choisir les données du modèle du GIEC RCP 4.5 car
celui-ci correspond au scenario le plus probable. Ces données ont ensuite été présentées sur une carte disponible dans
l’onglet Environnement.

Graph des canicules

Toujours sur la base des données du Climate Data Store, nous avons selectionner ces données représentant le nombre
de jours de canicule. Il nous est paru plus pertinent de représenter les jours de canicule uniquement à l’emplacement
du viticultuteur.

1.4 Déploiement et installation

1.4.1 Déploiement en ligne

Le code est stocké sur GitHub puis déployé sur Heroku pour qu’il soit accessible en ligne. Ce choix a été fait pour
simplifier la création et la visualtions du PoC dans un premier temps. Cependant, à terme, l’application sera hébergée
sur Google Cloud.

La principale conséquence de ce choix est le temps que met l’application à charger.

6 Chapitre 1. Table des matières

https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-tourism-fire-danger-indicators?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-heat-and-cold-spells?tab=overview


GRID, Version 1.0

1.4.2 Installation en local

Si vous le souhaitez, il est possible de faire tourner l’application en local, cependant cela nécessite Python 3.x et un
manager de module type pip ou anaconda. Pour la suite, nous supposerons que ces pré-requis sont remplis.

Pour utiliser l’application en local :

1. Clonez la branche principale du répértoire GitHub

2. Créez un environnement virtuel soit avec :
1. pip : python3 -m pip install -r requirements.txt

2. anaconda conda env create -f environment.yml

1.5 Module agri_data

1.5.1 agri_data package

Submodules

agri_data.data_draw module

© GRID Team, 2021

class agri_data.data_draw.RandomDraw
Bases : object
Cette classe télécharge les données de GitHub et les stocke en local. Pour certains jeux de données, ils sont
modifiés par un tri alétoire à chaque login
data_agri()

Télécharge et enregistre les données liées à l’emplacement de l’agriculteur.
financial_data()

Télécharge et enregistre les données liées aux données financières. Elles sont randomisées avant l’enregis-
trement.

gauges_val()
Télécharge et enregistre les données pour générer les échelles de couleurs.

graph_val()
Télécharge et enregistre les données pour générer les graphs.

indic_critique()
Télécharge et enregistre les données donnant les indices critiques.

main()
scoring_data()

Télécharge et enregistre les données de scoring RSE. Elles sont randomisées avant l’enregistrement.
stat_data()

Télécharge et enregistre les données donnant les statiques liés à la région.

1.5. Module agri_data 7

https://github.com/Green-Investement-Dashboard/GRID_app


GRID, Version 1.0

agri_data.data_import module

© GRID Team, 2021

class agri_data.data_import.ReadData(name)
Bases : object
Cette classe lit les données json disponibles en locals et retourne une dataframe
read_json()

Module contents

1.6 Module app

1.6.1 Subpackages

app.base package

Submodules

app.base.forms module

Modified for GRID, 2021

Copyright (c) 2019 - present AppSeed.us

Génère les formulaires d’inscription et de connexion

class app.base.forms.CreateAccountForm(*args, **kwargs)
Bases : flask_wtf.form.FlaskForm
email = <UnboundField(TextField, ('Email',), {'id': 'email_create', 'validators': [<wtforms.validators.DataRequired object>, <wtforms.validators.Email object>]})>
password = <UnboundField(PasswordField, ('Password',), {'id': 'pwd_create', 'validators': [<wtforms.validators.DataRequired object>]})>

username = <UnboundField(TextField, ('Username',), {'id': 'username_create', 'validators': [<wtforms.validators.DataRequired object>]})>

class app.base.forms.LoginForm(*args, **kwargs)
Bases : flask_wtf.form.FlaskForm
password = <UnboundField(PasswordField, ('Password',), {'id': 'pwd_login', 'validators': [<wtforms.validators.DataRequired object>]})>
username = <UnboundField(TextField, ('Username',), {'id': 'username_login', 'validators': [<wtforms.validators.DataRequired object>]})>

app.base.models module

Modified for GRID, 2021

Copyright (c) 2019 - present AppSeed.us

Sert à lire et écrire dans la db des logins

class app.base.models.User(**kwargs)
Bases : sqlalchemy.ext.declarative.api.Model, flask_login.mixins.UserMixin
email

id

password

username

8 Chapitre 1. Table des matières



GRID, Version 1.0

app.base.models.request_loader(request)

app.base.models.user_loader(id)

app.base.routes module

Modified for GRID, 2021

Copyright (c) 2019 - present AppSeed.us

Gère les routines des connnexions et inscription

app.base.routes.access_forbidden(error)

app.base.routes.internal_error(error)

app.base.routes.login()

app.base.routes.logout()

app.base.routes.not_found_error(error)

app.base.routes.register()

app.base.routes.route_default()

app.base.routes.shutdown()

app.base.routes.unauthorized_handler()

app.base.util module

Modified for GRID, 2021

Copyright (c) 2019 - present AppSeed.us

app.base.util.hash_pass(password)
Hash mot de passe SHA-256

app.base.util.verify_pass(provided_password, stored_password)
Verification du mot de passe par Hash

Module contents

Modified for GRID, 2021

Copyright (c) 2019 - present AppSeed.us

app.home package

Subpackages

app.home.content_gen package

Submodules

1.6. Module app 9



GRID, Version 1.0

app.home.content_gen.graph_generation module

© GRID Team, 2021

class app.home.content_gen.graph_generation.BulletChart(indic, indic_name)
Bases : object
Cette classe génère une échelle à 3 couleurs pour un indicateur donné

Paramètres
— indic (str) – le code indicateur au format Ex, Sx ou Gx (où x est un int)
— indic_name – le nom de l’indicateur utilisé pour le titre

plot()
Les données sont importées depuis l’__init__

Renvoie objet json contenant le plot

Type renvoyé json

class app.home.content_gen.graph_generation.CaniculePlot
Bases : object
Cette classe génère le graphique des canicules dans la page Environnement. Les données sont importées direc-
tement
find_closest()

Sur la base de la localisation de la PME, recherche le point de donnée le plus proche. Ces données de-
viennent les variables self.lat et self.lon

main()
Fonction principale de la classe

Renvoie objet json

Type renvoyé json

plot()
Plot un graphique ligne et stocke l’object json dans self.graphjson

class app.home.content_gen.graph_generation.FinancialChart(*args)
Bases : object
Cette classe génère les diagrammes pour la partie finance

Paramètres **args – le code indicateur au format Ex, Sx ou Gx (où x est un int)

plot_bar()
Les données sont importées depuis l’__init__. Génère un graphique barre

Renvoie list d’objet json

Type renvoyé list[json]

plot_mltpl_line()
Les données sont importées depuis l’__init__. Génère un graphique ligne avec 2 axes y

Renvoie list d’objet json

Type renvoyé list[json]

plot_sgl_line()
Les données sont importées depuis l’__init__. Génère un graphique ligne

Renvoie list d’objet json

Type renvoyé list[json]

class app.home.content_gen.graph_generation.PieChart(indic, indic_name)
Bases : object
Cette classe génère les diagrames camembert

Paramètres

10 Chapitre 1. Table des matières



GRID, Version 1.0

— indic (str) – le code indicateur au format Ex, Sx ou Gx (où x est un int)
— indic_name – le nom de l’indicateur utiliser pour le titre

plot()
Les données sont importées depuis l’__init__

Renvoie objet json contenant le plot

Type renvoyé json

app.home.content_gen.index_renderer module

© GRID Team, 2021

class app.home.content_gen.index_renderer.CriticalAlert
Bases : object
Cette classe donne las liste des indicateurs considérés comme critique.
main()

Renvoie liste de listes (une par indicateur) contenant pour chaque la liste des indicateurs critiques

Type renvoyé list

class app.home.content_gen.index_renderer.Scoring
Bases : object
Cette classe donne les données nécessaires au rendu des gauges indiquant les scores ESG
bin()

Génère les intervalles autour de la valeur moyenne
main()

Renvoie liste de listes (une par indicateur) contenant pour chaque : sa valeur, la valeur max de
l’echelle, une liste avec les intervalles de couleurs

Type renvoyé list

app.home.content_gen.map_generation module

© GRID Team, 2021

class app.home.content_gen.map_generation.CaniculePlot
Bases : object
Cette classe génère une heat map des canicules sur la base des données de Copernicus.
Les données ont été pré-traitées et stockées dans le même répertoire.
main()

Fonction lançant le tout

Renvoie objet json

Type renvoyé json

plot_at_date()
Crée un carte pour un date données

Renvoie objet json

Type renvoyé json

plot_cursor()
Crée un carte pour différentes dates avec un slider temporel (dates définies dans la variable list_date)

Renvoie objet json

Type renvoyé json

1.6. Module app 11



GRID, Version 1.0

read_json()

class app.home.content_gen.map_generation.FirePlot
Bases : object
Cette classe génère une carte avec un scatter plot des risques incendies sur la base des données de Copernicus.
Les données ont été pré-traitées et stockées dans le même répertoire.
color_scale(zmax)

Cette fonction accomplit 2 choses en parallèle : création d’une echelle de couleurs pour correpondre au
Fire Index européen et trouve les valeurs centrales de chacun des intervalles utilisés pour afficher l’echelle
de couleur annotée

Renvoie liste de l’echelle de couleurs normée (i.e. valeurs entre 0 et 1) et liste du centre des
intervalles

Type renvoyé list

main()
Fonction lançant le tout

Renvoie objet json

Type renvoyé json

plot_at_date()
Crée un carte pour une date donnée

Renvoie objet json

Type renvoyé json

plot_cursor()
Crée un carte pour différentes dates avec un slider temporel (dates définies dans la variable list_date)

Renvoie objet json

Type renvoyé json

read_json()
Lecture du fichier .json et tri de l’index

app.home.content_gen.questionaire module

© GRID Team, 2021

class app.home.content_gen.questionaire.QuestionairesAgri(*args, **kwargs)
Bases : flask_wtf.form.FlaskForm
Cette classe génère le questionaire Flask nécessaire au rendu HTML
address = <UnboundField(TextField, ('Address',), {})>

age = <UnboundField(TextField, ('Age',), {})>
autract = <UnboundField(TextField, ('autre activite',), {})>
autrcult = <UnboundField(SelectField, ('autre cultures',), {'choices': [('init', 'sélectionnez la proposition'), ('y', 'oui'), ('n', 'non')]})>

autrecertif = <UnboundField(TextField, ('autre certication',), {})>
autrequal = <UnboundField(TextField, ('autre qualite',), {})>

cepage = <UnboundField(SelectMultipleField, (), {'choices': [('init', 'sélectionnez la proposition'), ('cep1', 'cabernet sauvignon'), ('cep2', 'carignan'), ('cep3', 'grenache noir'), ('cep4', 'syrah'), ('cep5', 'muscat'), ('cep6', 'chardonnay'), ('cep7', 'cinsault')]})>
certif = <UnboundField(SelectField, ('certification',), {'choices': [('bio', 'label BIO'), ('hve', 'label HVE'), ('els', 'autre'), ('n', 'aucune')]})>
etp = <UnboundField(TextField, ('etp',), {})>

haie = <UnboundField(SelectField, ('Presence haies',), {'choices': [('init', 'sélectionnez la proposition'), ('y1', 'oui sur toutes les parcelles'), ('y2', 'oui sur une partie des parcelles'), ('no', 'non')]})>
ift = <UnboundField(TextField, ('ift',), {})>

intrant = <UnboundField(TextField, ('intrant',), {})>

irrig = <UnboundField(RadioField, (), {'choices': [('init', 'sélectionnez la proposition'), ('no_irrig', 'aucune irrigation'), ('yes_irrig1', 'oui sur la majorité des parcelles'), ('yes_irrig2', 'oui sur certaines parcelles')]})>

12 Chapitre 1. Table des matières



GRID, Version 1.0

mutu = <UnboundField(SelectMultipleField, (), {'choices': [('init', 'sélectionnez la proposition'), ('yes_mutu', 'oui'), ('no_mutu', 'non')]})>
name_exploit = <UnboundField(TextField, ('Nom exploitation',), {})>
qual = <UnboundField(SelectField, ('certification qualite',), {'choices': [('init', 'sélectionnez la proposition'), ('igp', 'IGP'), ('aop', 'AOP'), ('elsqual', 'autre'), ('n', 'aucune')]})>

sau = <UnboundField(TextField, ('sau',), {})>
submit = <UnboundField(SubmitField, ('Enregistrer',), {})>

typecult = <UnboundField(TextField, ('type culture',), {})>
typefonc = <UnboundField(SelectField, ('type de foncier',), {'choices': [('init', 'sélectionnez la proposition'), ('prop', 'proprietaire'), ('loc', 'locataire'), ('mist', 'proprietaire et locataire')]})>

app.home.content_gen.questionaire.save_data(data)
Cette fonction enregistre les données du questionaire

return dernières données rentrées pour l’affichage

Type renvoyé pandas df

Module contents

Submodules

app.home.routes module

Modified for GRID, 2021

Copyright (c) 2019 - present AppSeed.us

app.home.routes.get_segment(request)

app.home.routes.index()

app.home.routes.route_template(template)

Module contents

Modified for GRID, 2021

Copyright (c) 2019 - present AppSeed.us

1.6.2 Module contents

Modfied for GRID, 2021

Copyright (c) 2019 - present AppSeed.us

app.configure_database(app)

app.create_app(config)

app.register_blueprints(app)

app.register_extensions(app)

1.6. Module app 13



GRID, Version 1.0

14 Chapitre 1. Table des matières



CHAPITRE 2

Index et recherche

— genindex
— modindex
— search

15



GRID, Version 1.0

16 Chapitre 2. Index et recherche



Index des modules Python

a
agri_data, 8
agri_data.data_draw, 7
agri_data.data_import, 8
app, 13
app.base, 9
app.base.forms, 8
app.base.models, 8
app.base.routes, 9
app.base.util, 9
app.home, 13
app.home.content_gen, 13
app.home.content_gen.graph_generation,

10
app.home.content_gen.index_renderer, 11
app.home.content_gen.map_generation, 11
app.home.content_gen.questionaire, 12
app.home.routes, 13

17



GRID, Version 1.0

18 Index des modules Python



Index

A
access_forbidden() (dans le module

app.base.routes), 9
address (attribut app.home.content_gen.questionaire.QuestionairesAgri),

12
age (attribut app.home.content_gen.questionaire.QuestionairesAgri),

12
agri_data

module, 8
agri_data.data_draw

module, 7
agri_data.data_import

module, 8
app

module, 13
app.base

module, 9
app.base.forms

module, 8
app.base.models

module, 8
app.base.routes

module, 9
app.base.util

module, 9
app.home

module, 13
app.home.content_gen

module, 13
app.home.content_gen.graph_generation

module, 10
app.home.content_gen.index_renderer

module, 11
app.home.content_gen.map_generation

module, 11
app.home.content_gen.questionaire

module, 12
app.home.routes

module, 13

autract (attribut app.home.content_gen.questionaire.QuestionairesAgri),
12

autrcult (attribut app.home.content_gen.questionaire.QuestionairesAgri),
12

autrecertif (attribut
app.home.content_gen.questionaire.QuestionairesAgri),
12

autrequal (attribut app.home.content_gen.questionaire.QuestionairesAgri),
12

B
bin() (méthode app.home.content_gen.index_renderer.Scoring),

11
BulletChart (classe dans

app.home.content_gen.graph_generation),
10

C
CaniculePlot (classe dans

app.home.content_gen.graph_generation),
10

CaniculePlot (classe dans
app.home.content_gen.map_generation),
11

cepage (attribut app.home.content_gen.questionaire.QuestionairesAgri),
12

certif (attribut app.home.content_gen.questionaire.QuestionairesAgri),
12

color_scale() (méthode
app.home.content_gen.map_generation.FirePlot),
12

configure_database() (dans le module app), 13
create_app() (dans le module app), 13
CreateAccountForm (classe dans app.base.forms), 8
CriticalAlert (classe dans

app.home.content_gen.index_renderer), 11

D
data_agri() (méthode

agri_data.data_draw.RandomDraw), 7

19



GRID, Version 1.0

E
email (attribut app.base.forms.CreateAccountForm), 8
email (attribut app.base.models.User), 8
etp (attribut app.home.content_gen.questionaire.QuestionairesAgri),

12

F
financial_data() (méthode

agri_data.data_draw.RandomDraw), 7
FinancialChart (classe dans

app.home.content_gen.graph_generation),
10

find_closest() (méthode
app.home.content_gen.graph_generation.CaniculePlot),
10

FirePlot (classe dans
app.home.content_gen.map_generation),
12

G
gauges_val() (méthode

agri_data.data_draw.RandomDraw), 7
get_segment() (dans le module app.home.routes), 13
graph_val() (méthode

agri_data.data_draw.RandomDraw), 7

H
haie (attribut app.home.content_gen.questionaire.QuestionairesAgri),

12
hash_pass() (dans le module app.base.util), 9

I
id (attribut app.base.models.User), 8
ift (attribut app.home.content_gen.questionaire.QuestionairesAgri),

12
index() (dans le module app.home.routes), 13
indic_critique() (méthode

agri_data.data_draw.RandomDraw), 7
internal_error() (dans le module

app.base.routes), 9
intrant (attribut app.home.content_gen.questionaire.QuestionairesAgri),

12
irrig (attribut app.home.content_gen.questionaire.QuestionairesAgri),

12

L
login() (dans le module app.base.routes), 9
LoginForm (classe dans app.base.forms), 8
logout() (dans le module app.base.routes), 9

M
main() (méthode agri_data.data_draw.RandomDraw),

7

main() (méthode app.home.content_gen.graph_generation.CaniculePlot),
10

main() (méthode app.home.content_gen.index_renderer.CriticalAlert),
11

main() (méthode app.home.content_gen.index_renderer.Scoring),
11

main() (méthode app.home.content_gen.map_generation.CaniculePlot),
11

main() (méthode app.home.content_gen.map_generation.FirePlot),
12

module
agri_data, 8
agri_data.data_draw, 7
agri_data.data_import, 8
app, 13
app.base, 9
app.base.forms, 8
app.base.models, 8
app.base.routes, 9
app.base.util, 9
app.home, 13
app.home.content_gen, 13
app.home.content_gen.graph_generation,

10
app.home.content_gen.index_renderer,

11
app.home.content_gen.map_generation,

11
app.home.content_gen.questionaire,

12
app.home.routes, 13

mutu (attribut app.home.content_gen.questionaire.QuestionairesAgri),
12

N
name_exploit (attribut

app.home.content_gen.questionaire.QuestionairesAgri),
13

not_found_error() (dans le module
app.base.routes), 9

P
password (attribut app.base.forms.CreateAccountForm),

8
password (attribut app.base.forms.LoginForm), 8
password (attribut app.base.models.User), 8
PieChart (classe dans

app.home.content_gen.graph_generation),
10

plot() (méthode app.home.content_gen.graph_generation.BulletChart),
10

plot() (méthode app.home.content_gen.graph_generation.CaniculePlot),
10

20 Index



GRID, Version 1.0

plot() (méthode app.home.content_gen.graph_generation.PieChart),
11

plot_at_date() (méthode
app.home.content_gen.map_generation.CaniculePlot),
11

plot_at_date() (méthode
app.home.content_gen.map_generation.FirePlot),
12

plot_bar() (méthode
app.home.content_gen.graph_generation.FinancialChart),
10

plot_cursor() (méthode
app.home.content_gen.map_generation.CaniculePlot),
11

plot_cursor() (méthode
app.home.content_gen.map_generation.FirePlot),
12

plot_mltpl_line() (méthode
app.home.content_gen.graph_generation.FinancialChart),
10

plot_sgl_line() (méthode
app.home.content_gen.graph_generation.FinancialChart),
10

Q
qual (attribut app.home.content_gen.questionaire.QuestionairesAgri),

13
QuestionairesAgri (classe dans

app.home.content_gen.questionaire), 12

R
RandomDraw (classe dans agri_data.data_draw), 7
read_json() (méthode

agri_data.data_import.ReadData), 8
read_json() (méthode

app.home.content_gen.map_generation.CaniculePlot),
11

read_json() (méthode
app.home.content_gen.map_generation.FirePlot),
12

ReadData (classe dans agri_data.data_import), 8
register() (dans le module app.base.routes), 9
register_blueprints() (dans le module app), 13
register_extensions() (dans le module app), 13
request_loader() (dans le module

app.base.models), 8
route_default() (dans le module app.base.routes),

9
route_template() (dans le module

app.home.routes), 13

S
sau (attribut app.home.content_gen.questionaire.QuestionairesAgri),

13

save_data() (dans le module
app.home.content_gen.questionaire), 13

Scoring (classe dans
app.home.content_gen.index_renderer), 11

scoring_data() (méthode
agri_data.data_draw.RandomDraw), 7

shutdown() (dans le module app.base.routes), 9
stat_data() (méthode

agri_data.data_draw.RandomDraw), 7
submit (attribut app.home.content_gen.questionaire.QuestionairesAgri),

13

T
typecult (attribut app.home.content_gen.questionaire.QuestionairesAgri),

13
typefonc (attribut app.home.content_gen.questionaire.QuestionairesAgri),

13

U
unauthorized_handler() (dans le module

app.base.routes), 9
User (classe dans app.base.models), 8
user_loader() (dans le module app.base.models), 9
username (attribut app.base.forms.CreateAccountForm),

8
username (attribut app.base.forms.LoginForm), 8
username (attribut app.base.models.User), 8

V
verify_pass() (dans le module app.base.util), 9

Index 21


	Table des matières
	Introduction
	Infrastructure
	Indicateurs et graphiques
	Déploiement et installation
	Module agri_data
	Module app

	Index et recherche
	Index des modules Python
	Index

