GRID

Version 1.0

GRID Team

avr. 25, 2021

Table des matieres

1 Table des matiéres 3
1.1 Introduction e e e e e e e e e e e 3
1.2 Infrastructure L e e e e e e e e e 4
1.3 Indicateurs et graphiques L. 6
1.4 Déploiement etinstallation L e e 6
1.5 Moduleagri_data. e e e e e e e e e e e e e e 7
1.6 Moduleapp o o e e e e e e e e e e e e 8
2 Index et recherche 15
Index des modules Python 17
Index 19

GRID, Version 1.0

Bienvenue sur la documentation du GRID !

Ici, vous trouverez :
1. Le fonctionement général du projet
2. L’insfrastructure du projet
3. Comment les indicateurs sont calculés
4. Comment lire le projet
5. La documentation spécifique au moudule data_agri qui génere les données
6. La documentation spécifique au module app qui génere 1’app

Documentation PDF

Attention : Le dashboard est pour le moment optimisé uniquement pour les écrans d’ordinateurs

Table des matiéres 1

http://docs.grid-tech.fr/grid.pdf

GRID, Version 1.0

2 Table des matiéres

cHAPITRE 1

Table des matiéres

1.1 Introduction

1.1.1 Se connecter

Pour voir le dashboard, rendez-vous sur app.grid-tech.fr .

Pour les besoins de la démonstration dans le cadre du concours FIFG, un compte test a été créé :
— Nom d’utilisateur : test
— Mot de passe : test

Astuce : Avec notre infrastructure actuelle, le chargement des pages peut paraitre long mais nous travaillons pour y
remédier.

Attention : Le dashboard est pour le moment optimisé pour les écrans d’ordinateurs.

Pour plus de détails sur le déploiement Déploiement et installation

1.1.2 Les données

Les données d’entrée

Le GRID fonctionne a partir de 2 types de données d’entrée :
— Les données externes provenant de Météo France, Copernicus, etc;
— Les données liées a I’exploitation :
— Données internes rentrées par 1’agriculteur dans un questionnaire ;
— Données financieres provenant de I’établissement bancaire.

http://app.grid-tech.fr

GRID, Version 1.0

Données pour le PoC

Pour le PoC, afin de démontrer la capacité dynamique du dashboard, a chaque login, une partie des données sont tirées
au hasard, en particulier celles relatives :

— aux scores RSE présentés sur la premiere page

— aux données financieres (cf page indicateur et le module agri_data pour plus de détail)
Toutes les données sont disponibles ici

Pour plus de détail sur les données et leur exploitation Indicateurs et graphiques

1.1.3 Le code

Vous pouvez retrouver notre code dans son intégralité ici.

1.2 Infrastructure

1.2.1 Organisation globale du répertoire

Le répertoire est organisé autour de deux principaux modules :
— app : module générant I’application et ses rendus
— agri_data : module regroupant et générant les données
Le fichier principal qui lance I’application est situé a la racine, il s’appelle run . py

|-—— app/ # L'application en elle méme

| | == home/ # Génération des contenus spécifiques,,
—pas page HTML spécifiques

| |-— base/ # Blueprint, contient la structure de 1

— 'application
|
|-— agri_data/ # Génération des données

|—— KA AR A A A A A A A AR A A A AR A A A A A AR AR A A A A A A A A A A A A AR A A A I A A A A A I A A I AR A AR A A A A Ak ko kK

1.2.2 Point de vue Flask App / Python

Le module app est organisé en 2 sous-modules :
— home qui sert a générer les visuels, en particulier le sous-module content_gen
— base qui sert a gérer 1’authentification

Le code est ensuite commenté et précisé dans les modules Module agri_data et Module app

La structure du répértoire ,d’un point de vue Python, est la suivante :

|

|

@

e}

O
~
S

|

| L'application en elle méme
| | -— home/

| | -— content_gen/ Module générant les visuels

| | |-— data/ Données externes pré-traitées
| Génération des graphiques

| Génération de 1'index

|

|

Génération des cartes

| -— graph_generation.py
| -— index_renderer.py
| -— map_generation.py
|-— questionaire.py.py

H HH R W W H

Génération du questionnaire agri

(suite sur Ta page suivante)

4 Chapitre 1. Table des matiéres

https://github.com/Green-Investement-Dashboard/data/tree/main/data_eg
https://github.com/Green-Investement-Dashboard/GRID_app

GRID, Version 1.0

(suite de la page précédente)

|-— routes.py

|
|
| |-— base/
|

|-— forms.py
—et d'inscription
| | -— models.py

—de données des logins
| |-— routes.py
| |-— util.py
—passe

|
|-— agri_data/

| | -— data_draw.py

| |-— data_import.py
| |-— %.Jjson

|
| -— requirements.txt
—fonctionner le code

| -— environment.yml

| -— requirements-mysqgl.txt
| -— regquirements-pgsqgl.txt

|-— .env
|-— config.py
|-— run.py

H ¥

e

Script gérant le formulaire de login,,
Script gérant la lecture de la base,

Script gérant les actions
Script gérant le hachage du mot de_

Tirage aléatoire des données
Import des données de GitHub

Librairies nécessaires pour faire_,

Environnement anaconda
Module nécessaire pour Mysgl DMBS
Module nécessaire pour PostgreSql DMBS

Variable environnement
Configuration de 1'application
Lancement de 1'application

|—— KA AR A A A A A A A AR A A A A A A A AR A AR AR A AR A A A A A A A A KA A AR A I A A I A A AR A IR A A A A A AR A A AR A A ARk K

1.2.3 Point de vue fronte-end / HTML

Les fichiers HTML sont organisés autour de 2 dossiers :

— /home : ici sont stockés les fichiers HTML des pages du dashboard
— /base : ici sont stockés les fichiers HTML servant de modeles pour générer les pages

|
|-— app/

| | —— home/

|-— templates/

| \ |-— %.html

|-— base/
|-— static/
| |-— <css, JS, images>
|
|-— templates/
\
| -— includes/
| |-— navigation.html
| -— sidebar.html
| -— footer.html
|-— scripts.html

-— layouts/

\
\
\
\
\
| | -— base.html
\

HH W W H

e

Ensemble des pages HTML

Fichiers CSS, Javascripts et images

Modeles pour le rendu des pages

Menu du haut
Menu latéral
Pied de page
Scripts communs aux pages HTML

Pages masters
Layout des pages

(suite sur Ja page suivante)

1.2. Infrastructure

GRID, Version 1.0

(suite de la page précédente)

| -— accounts/ # Pages authentification
|-— login.html # Page de Login

|
|
| | -— register.html # Page d'inscription
|
|

T kA Ak A A kA A Ak A A A Ak Ak dkh bk dk kA dk kA dk Ak hk Ak hkh kA dAhkrAdh kA Ak dhhkkkx*k

1.3 Indicateurs et graphiques

1.3.1 Les types de représentations

Afin de rendre compte au mieux des données, nous utilisons trois types de représentations :

— Compteurs : ceux-ci codés en JS représentent les 3 scores ESG sur la page d’accueil.

— Graphiques : que ce soit des graphiques lignes ou a barres ils servent a représenter 1’évolution temporelle d’un
indicateur .

— Echelles de couleurs : lorsque qu’un indicateur est calculé a partir d’un modele, il est représenté sous la
forme d’une échelle de couleurs comme on peut le retrouver dans I’onglet Social avec le rayonnement de
I’exploitation.

— Cartes : ce support est utilisé pour représenter des données spatiales avec une dimension temporelle.

1.3.2 Exemple d’indicateurs

Carte des feu de foréts

Sur la base des données du Climate Data Store, base de données de I’UE, nous avons pu exporter ces données, les
traiter et les nettoyer pour notre usage. Nous avons décidé de choisir les données du modele du GIEC RCP 4.5 car
celui-ci correspond au scenario le plus probable. Ces données ont ensuite été présentées sur une carte disponible dans
I’onglet Environnement.

Graph des canicules

Toujours sur la base des données du Climate Data Store, nous avons selectionner ces données représentant le nombre
de jours de canicule. Il nous est paru plus pertinent de représenter les jours de canicule uniquement a 1’emplacement
du viticultuteur.

1.4 Déploiement et installation

1.4.1 Déploiement en ligne

Le code est stocké sur GitHub puis déployé sur Heroku pour qu’il soit accessible en ligne. Ce choix a été fait pour
simplifier la création et la visualtions du PoC dans un premier temps. Cependant, a terme, 1’application sera hébergée
sur Google Cloud.

La principale conséquence de ce choix est le temps que met I’application a charger.

6 Chapitre 1. Table des matiéres

https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-tourism-fire-danger-indicators?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-heat-and-cold-spells?tab=overview

GRID, Version 1.0

1.4.2 Installation en local

Si vous le souhaitez, il est possible de faire tourner 1’application en local, cependant cela nécessite Python 3.x et un
manager de module type pip ou anaconda. Pour la suite, nous supposerons que ces pré-requis sont remplis.

Pour utiliser I’application en local :
1. Clonez la branche principale du répértoire GitHub
2. Créez un environnement virtuel soit avec :
1. pip: python3 -m pip install -r requirements.txt

2. anaconda conda env create —-f environment.yml

1.5 Module agri_data

1.5.1 agri_data package
Submodules
agri_data.data_draw module

© GRID Team, 2021

class agri_data.data_draw.RandomDraw
Bases : object
Cette classe télécharge les données de GitHub et les stocke en local. Pour certains jeux de données, ils sont
modifiés par un tri alétoire a chaque login
data_agri ()
Télécharge et enregistre les données liées a I’emplacement de 1’agriculteur.
financial_data(()
Télécharge et enregistre les données liées aux données financieres. Elles sont randomisées avant I’enregis-
trement.
gauges_val ()
Télécharge et enregistre les données pour générer les échelles de couleurs.
graph_val ()
Télécharge et enregistre les données pour générer les graphs.
indic_critique ()
Télécharge et enregistre les données donnant les indices critiques.
main ()
scoring_data/()
Télécharge et enregistre les données de scoring RSE. Elles sont randomisées avant 1’enregistrement.
stat_data ()
Télécharge et enregistre les données donnant les statiques liés a la région.

1.5. Module agri_data 7

https://github.com/Green-Investement-Dashboard/GRID_app

GRID, Version 1.0

agri_data.data_import module

© GRID Team, 2021

class agri_data.data_import.ReadData (name)
Bases : object

Cette classe lit les données json disponibles en locals et retourne une dataframe
read_json|()

Module contents
1.6 Module app

1.6.1 Subpackages

app.base package

Submodules
app.base.forms module

Modified for GRID, 2021
Copyright (c) 2019 - present AppSeed.us
Génere les formulaires d’inscription et de connexion

class app.base.forms.CreateAccountForm (*args, **kwargs)
Bases: flask_wtf.form.FlaskForm

email = <UnboundField (TextField, ('Email',), {'id': 'email_ create', 'validators': [<wt
password = <UnboundField(PasswordField, ('Password',), {'id': 'pwd_create', 'validator
username = <UnboundField(TextField, ('Username',), {'id': 'username_create', 'validato

class app.base.forms.LoginForm (*args, **kwargs)
Bases: flask_wtf.form.FlaskForm

password = <UnboundField(PasswordField, ('Password',), {'id': 'pwd_login',
username = <UnboundField (TextField, ('Username',), {'id': 'username_login',

app.base.models module

Modified for GRID, 2021
Copyright (c) 2019 - present AppSeed.us
Sert a lire et écrire dans la db des logins
class app.base.models.User (**kwargs)
Bases: sglalchemy.ext.declarative.api.Model, flask_login.mixins.UserMixin
email
id
password
username

8 Chapitre 1. Table des matiéres

'validators

'validator

GRID, Version 1.0

app.base.models.request_loader (request)

app.base.models.user_loader (id)

app.base.routes module

Modified for GRID, 2021

Copyright (c) 2019 - present AppSeed.us

Gere les routines des connnexions et inscription
app.base.routes.access_forbidden (error)
app.base.routes.internal_error (error)
app.base.routes.login ()
app.base.routes.logout ()
app.base.routes.not_found_error (error)
app.base.routes.register ()
app.base.routes.route_default ()
app.base.routes.shutdown ()

app.base.routes.unauthorized_ handler ()

app.base.util module

Modified for GRID, 2021
Copyright (c) 2019 - present AppSeed.us

app.base.util.hash_pass (password)
Hash mot de passe SHA-256

app.base.util.verify_pass (provided_password, stored_password)
Verification du mot de passe par Hash

Module contents

Modified for GRID, 2021
Copyright (c) 2019 - present AppSeed.us

app.-home package
Subpackages
app.-home.content_gen package

Submodules

1.6. Module app

GRID, Version 1.0

app.-home.content_gen.graph_generation module

© GRID Team, 2021

class app.home.content_gen.graph_generation.BulletChart (indic, indic_name)
Bases : object
Cette classe génere une échelle a 3 couleurs pour un indicateur donné

Parameétres
— indic (str) - le code indicateur au format Ex, Sx ou Gx (ou X est un int)
— indic_name - le nom de I’indicateur utilisé pour le titre

plot ()
Les données sont importées depuis I’ __init__

Renvoie objet json contenant le plot
Type renvoyé json
class app.home.content_gen.graph_generation.CaniculePlot
Bases : object
Cette classe génere le graphique des canicules dans la page Environnement. Les données sont importées direc-
tement

find closest ()
Sur la base de la localisation de la PME, recherche le point de donnée le plus proche. Ces données de-

viennent les variables self.lat et self.lon

main ()
Fonction principale de la classe

Renvoie objet json
Type renvoyé json

plot ()
Plot un graphique ligne et stocke I’object json dans self.graphjson

class app.home.content_gen.graph_generation.FinancialChart (*args)
Bases : object
Cette classe génere les diagrammes pour la partie finance

Parametres **args — le code indicateur au format Ex, Sx ou Gx (ol x est un int)

plot_bar ()
Les données sont importées depuis I’__init__. Génere un graphique barre

Renvoie list d’objet json
Type renvoyé list[json]

plot_mltpl line()
Les données sont importées depuis I’__init__. Génere un graphique ligne avec 2 axes y

Renvoie list d’objet json
Type renvoyé list[json]

plot_sgl_line()
Les données sont importées depuis I’__init__. Génére un graphique ligne

Renvoie list d’objet json
Type renvoyé list[json]
class app.home.content_gen.graph_generation.PieChart (indic, indic_name)

Bases : object
Cette classe génere les diagrames camembert

Parameétres

10 Chapitre 1. Table des matiéres

GRID, Version 1.0

— indic (str) - le code indicateur au format Ex, Sx ou Gx (ol X est un int)
— indic_name - le nom de I’indicateur utiliser pour le titre

plot ()
Les données sont importées depuis I’__init__

Renvoie objet json contenant le plot

Type renvoyé json

app-home.content_gen.index_renderer module

© GRID Team, 2021

class app.home.content_gen.index_renderer.CriticallAlert
Bases : object
Cette classe donne las liste des indicateurs considérés comme critique.
main ()
Renvoie liste de listes (une par indicateur) contenant pour chaque la liste des indicateurs critiques
Type renvoyé list
class app.home.content_gen.index_renderer.Scoring
Bases : object
Cette classe donne les données nécessaires au rendu des gauges indiquant les scores ESG

bin ()
Génere les intervalles autour de la valeur moyenne

main ()

Renvoie liste de listes (une par indicateur) contenant pour chaque : sa valeur, la valeur max de
I’echelle, une liste avec les intervalles de couleurs

Type renvoyé list

app.-home.content_gen.map_generation module

© GRID Team, 2021

class app.home.content_gen.map_generation.CaniculePlot
Bases : object
Cette classe génere une heat map des canicules sur la base des données de Copernicus.
Les données ont été pré-traitées et stockées dans le méme répertoire.

main ()
Fonction langant le tout

Renvoie objet json
Type renvoyé json

plot_at_date ()
Crée un carte pour un date données

Renvoie objet json
Type renvoyé json

plot_cursor ()
Crée un carte pour différentes dates avec un slider temporel (dates définies dans la variable list_date)

Renvoie objet json

Type renvoyé json

1.6. Module app 11

GRID, Version 1.0

read_json ()
class app.home.content_gen.map_generation.FirePlot
Bases : object
Cette classe génere une carte avec un scatter plot des risques incendies sur la base des données de Copernicus.
Les données ont été pré-traitées et stockées dans le méme répertoire.

color_scale (zmax)
Cette fonction accomplit 2 choses en parallele : création d’une echelle de couleurs pour correpondre au
Fire Index européen et trouve les valeurs centrales de chacun des intervalles utilisés pour afficher 1’echelle
de couleur annotée

Renvoie liste de 1’echelle de couleurs normée (i.e. valeurs entre O et 1) et liste du centre des
intervalles

Type renvoyé list

main ()
Fonction langant le tout

Renvoie objet json
Type renvoyé json

plot_at_date(()
Crée un carte pour une date donnée

Renvoie objet json
Type renvoyé json

plot_cursor ()
Crée un carte pour différentes dates avec un slider temporel (dates définies dans la variable list_date)

Renvoie objet json
Type renvoyé json

read_json ()
Lecture du fichier .json et tri de I’'index

app-home.content_gen.questionaire module

© GRID Team, 2021

class app.home.content_gen.questionaire.QuestionairesAgri (*args, **kwargs)
Bases: flask_wtf.form.FlaskForm

Cette classe génere le questionaire Flask nécessaire au rendu HTML

address = <UnboundField (TextField, ('Address',), {})>

age = <UnboundField (TextField, ('Age',), {})>

autract = <UnboundField (TextField, ('autre activite',), {})>

autrcult = <UnboundField(SelectField, ('autre cultures',), {'choices': [('init',6K 'séle
autrecertif = <UnboundField(TextField, ('autre certication',), {})>

autrequal = <UnboundField (TextField, ('autre qualite',), {})>

cepage = <UnboundField(SelectMultipleField, (), {'choices': [('init', 'sélectionnez la

certif = <UnboundField(SelectField, ('certification',), {'choices': [('bio', 'label BI

etp = <UnboundField (TextField, ('etp',), {})>

haie = <UnboundField(SelectField, ('Presence haies',), {'choices': [('init',6 'sélectio

ift = <UnboundField (TextField, ('ift',), {})>
intrant = <UnboundField(TextField, ('intrant',), {})>

irrig = <UnboundField(RadioField, (), {'choices': [('init', 'sélectionnez la propositi

12 Chapitre 1. Table des matiéres

GRID, Version 1.0

mutu = <UnboundField(SelectMultipleField, (), {'choices': [('init', 'sélectionnez la p
name_exploit = <UnboundField (TextField, ('Nom exploitation',), {})>

qual = <UnboundField(SelectField, ('certification qualite',), {'choices': [('init',6K 's
sau = <UnboundField (TextField, ('sau',), {})>

submit = <UnboundField(SubmitField, ('Enregistrer',), {})>

typecult = <UnboundField (TextField, ('type culture',), {})>

typefonc = <UnboundField(SelectField, ('type de foncier',), {'choices': [('init',6 'sél

app.home.content_gen.questionaire.save_data (data)
Cette fonction enregistre les données du questionaire

return dernieres données rentrées pour I’affichage

Type renvoyé pandas df

Module contents
Submodules
app.-home.routes module

Modified for GRID, 2021

Copyright (c) 2019 - present AppSeed.us
app.home.routes.get_segment (request)
app.home.routes.index ()

app.home.routes.route_template (template)

Module contents

Modified for GRID, 2021
Copyright (c) 2019 - present AppSeed.us

1.6.2 Module contents

Modfied for GRID, 2021

Copyright (c) 2019 - present AppSeed.us
app.configure_database (app)
app .create_app (config)
app.register blueprints (app)

app.register_ extensions (app)

1.6. Module app 13

GRID, Version 1.0

14 Chapitre 1. Table des matiéres

CHAPITRE 2

Index et recherche

— genindex
— modindex
— search

15

GRID, Version 1.0

16 Chapitre 2. Index et recherche

Index des modules Python

a

agri_data, 8
agri_data.data_draw,7
agri_data.data_import,8

app, 13

app.base, 9

app.base.
app.base.
app.base.
app.base.
app.home,
app.home.
app.home.

10
app.home.
app.home.
app.home.
app.home.

forms, 8

models, 8

routes, 9

util, 9

13

content_gen, 13
content_gen.graph_generation,

content_gen.index_renderer, 11
content_gen.map_generation, 11
content_gen.questionaire, 12
routes, 13

17

GRID, Version 1.0

18 Index des modules Python

Index

A

access_forbidden ()
app.base.routes), 9

(dans le

module

autract (attribut app.home.content_gen.questionaire. QuestionairesAgri).
12

autrcult (attribut app.home.content_gen.questionaire.QuestionairesAgr

address (attribut app.home.content_gen.questionaire. QuestionairesA%ri),

12

autrecertif (attribut

age (attribut app.home.content _gen.questionaire.QuestionairesAgri),app'home-Contem—genﬂuemona’r e.QuestionairesAgri),
12

12
agri_data
module, 8
agri_data.data_draw
module, 7
agri_data.data_import
module, 8
app
module, 13
app.base
module, 9
app.base. forms
module, 8
app.base.models
module, 8
app.base.routes
module, 9
app.base.util
module, 9
app.home
module, 13
app.home.content_gen
module, 13
app.home.content_gen.graph_generation
module, 10
app.home.content_gen.index_renderer
module, 11
app.home.content_gen.map_generation
module, 11
app.home.content_gen.questionaire
module, 12
app.home.routes
module, 13

autrequal (attribut app.home.content_gen.questionaire. QuestionairesAg
12

B

bin () (méthode app.home.content_gen.index_renderer.Scoring),
11

BulletChart (classe dans
app.home.content_gen.graph_generation),
10

C

CaniculePlot (classe dans
app.home.content_gen.graph_generation),
10

CaniculePlot (classe dans

app.home.content_gen.map_generation),
11

cepage (attribut app.home.content_gen.questionaire. QuestionairesAgri),
12

certif (attribut app.home.content_gen.questionaire. QuestionairesAgri),
12

color_scale () (méthode
app.home.content_gen.map_generation.FirePlot),
12

configure_database () (dans le module app), 13

create_app () (dans le module app), 13

CreateAccountForm (classe dans app.base.forms), 8

CriticalAlert (classe dans
app.home.content_gen.index_renderer), 11

D

data_agri () (méthode
agri_data.data_draw.RandomDraw), 7

19

GRID, Version 1.0

E

email (attribut app.base.forms.CreateAccountForm), 8
email (attribut app.base.models.User), 8

main () (méthode app.home.content_gen.graph_generation.CaniculePlot),
10
main () (méthode app.home.content_gen.index_renderer.CriticalAlert),

etp (attribut app.home.content_gen.questionaire.QuestionairesAgri), 11

12

F

financial_data () (méthode
agri_data.data_draw.RandomDraw), 7

main () (méthode app.home.content_gen.index_renderer.Scoring),
11

main () (méthode app.home.content_gen.map_generation.CaniculePlot),
11

main () (méthode app.home.content_gen.map_generation.FirePlot),
12

FinancialChart (classe dans
app.home.content_gen.graph_generation), module
10 agri_data, 8
find_closest () (méthode agr::L_data . data_<'iraw, 7
app.home.content_gen.graph_generation. CaniculePlot5-9* i_data.data_import, 8
10 app, 13
FirePlot (classe dans app.base,9
app.home.content_gen.map_generation), app.base.forms, 8
12 app.base.models, 8
app.base.routes, 9
G app.base.util, 9
gauges_val () (méthode app.home, 13 13
agri_data.data_draw.RandomDraw), 7 app- Eome -content_gen, L. N)
get_segment () (dans le module app.home.routes), 13 app .loome -content_gen.graph_generation,
graph_val () (méthode i
agri_data.data_draw.RandomDraw), 7 app.home.content_gen.index_renderer,
- - ’ 11
H app.home.content_gen.map_generation,
haie (amilé?ut app. home.content_gen.quesnonalre.Questtonalreséﬁ\}é’g?home .content_gen.questionaire,
12

hash_pass () (dans le module app.base.util), 9

id (attribut app.base.models.User), 8

app.home.routes, 13
mutu (attribut app.home.content_gen.questionaire.QuestionairesAgri),
12

ift (attribut app.home.content_gen.questionaire. QuestionaN:sAgri),

12
index () (dans le module app.home.routes), 13
indic_critique () (méthode
agri_data.data_draw.RandomDraw), 7
internal_error () (dans le
app.base.routes), 9

module

name_exploit (attribut
app.home.content_gen.questionaire. QuestionairesAgri),
13

not_found_error () (dans le module

app.base.routes), 9

intrant (attribut app.home.content_gen.questionaire. QuefonairesAgri),

12

C . Lo .passwor
irrig (attribut app.home.content_gen.questionaire. Quesn(gaalresf gigﬂ

12

L

login () (dans le module app.base.routes), 9
LoginForm (classe dans app.base.forms), 8
logout () (dans le module app.base.routes), 9

M

main () (méthode agri_data.data_draw.RandomDraw),
7

(attribut app.base.forms.CreateAccountForm),

password (attribut app.base.forms.LoginForm), 8
password (attribut app.base.models.User), 8

PieChart (classe dans
app.home.content_gen.graph_generation),
10

plot () (méthode app.home.content_gen.graph_generation.BulletChart),
10

plot () (méthode app.home.content_gen.graph_generation.CaniculePlot),
10

20

Index

GRID, Version 1.0

plot () (méthode app.home.content_gen.graph_generationsBre€hara}; a () (dans le module
11 app.home.content_gen.questionaire), 13
plot_at_date () (méthode Scoring (classe dans
app.home.content_gen.map_generation.CaniculePlot), app.home.content_gen.index_renderer), 11
11 scoring_data () (méthode
plot_at_date () (méthode agri_data.data_draw.RandomDraw), 7
app.home.content_gen.map_generation.FirePlot),shutdown () (dans le module app.base.routes), 9
12 stat_data () (méthode
plot_bar () (méthode agri_data.data_draw.RandomDraw), 7
app.home.content_gen.graph_generation. FinancicdGhart}, (attribut app.home.content_gen.questionaire. QuestionairesAgri),
10 13
plot_cursor () (méthode
app.home.content_gen.map _generation.CaniculePTot),
11 typecult (attribut app.home.content_gen.questionaire. QuestionairesAgri
plot_cursor () (méthode 13
app.home.content_gen.map_generation.FirePlot),t ype fonc (attribut app.home.content_gen.questionaire. QuestionairesAgri
12 13
plot_mltpl_line () (méthode
app.home.content_gen.graph _generation.FinanciclLbhart),
10 unauthorized_handler () (dans le module
plot_sgl _line() (méthode app.base.routes), 9
app-home.content_gen.graph_generation.Financial€b&r(:lasse dans app.base.models), 8
10 user_loader () (dans le module app.base.models), 9
Q usernamne (attribut app.base.forms.CreateAccountForm),
8
qual (attribut app.home.content_gen.questionaire. QuestionagesAgiie (attribut app.base.forms.LoginForm), 8
13 username (attribut app.base.models.User), 8
QuestionairesAgri (classe dans

app.home.content_gen.questionaire), 12

R verify_ pass () (dans le module app.base.util), 9
RandomDraw (classe dans agri_data.data_draw), 7
read_json () (méthode
agri_data.data_import.ReadData), 8
read_json () (méthode

app.home.content_gen.map_generation.CaniculePlot),
11

read_json () (méthode
app.home.content_gen.map_generation.FirePlot),
12

ReadData (classe dans agri_data.data_import), 8

register () (dans le module app.base.routes), 9

register_blueprints () (dans le module app), 13

register_extensions () (dans le module app), 13

request_loader () (dans le module
app.base.models), 8

route_default () (dans le module app.base.routes),
9

route_template () (dans le module
app.home.routes), 13

S

sau (attribut app.home.content_gen.questionaire. QuestionairesAgri),
13

Index 21

	Table des matières
	Introduction
	Infrastructure
	Indicateurs et graphiques
	Déploiement et installation
	Module agri_data
	Module app

	Index et recherche
	Index des modules Python
	Index

